gfw_integrated_alerts
created_on
2024-07-11T15:09:28.641874
updated_on
2024-10-04T16:27:49.011630
resolution_description
10 × 10 m
geographic_coverage
30°N to 30°S
citation
Source: "Integrated Deforestation Alerts". UMD/GLAD and WUR, accessed through Global Forest Watch
title
Integrated deforestation alerts
source
*GLAD Alerts:*
Hansen, M.C., A. Krylov, A. Tyukavina, P.V. Potapov, S. Turubanova, B. Zutta, S. Ifo, B. Margono, F. Stolle, and R. Moore. 2016. Humid tropical forest disturbance alerts using Landsat data. Environmental Research Letters, 11 (3). (https://dx.doi.org/10.1088/1748-9326/11/3/034008)[https://dx.doi.org/10.1088/1748-9326/11/3/034008]
*GLAD-S2 Alerts:*
Pickens, A.H., Hansen, M.C., Adusei, B., and Potapov P. 2020. Sentinel-2 Forest Loss Alert. Global Land Analysis and Discovery (GLAD), University of Maryland.
*RADD Alerts:*
Reiche, J., Mullissa, A., Slagter, B., Gou, Y., Tsendbazar, N.E., Braun, C., Vollrath, A., Weisse, M.J., Stolle, F., Pickens, A., Donchyts, G., Clinton, N., Gorelick, N., Herold, M. 2021. Forest disturbance alerts for the Congo Basin using Sentinel-1. Environmental Research Letters. (https://doi.org/10.1088/1748-9326/abd0a8)[https://doi.org/10.1088/1748-9326/abd0a8]
license
[CC by 4.0](https://creativecommons.org/licenses/by/4.0/)
overview
This dataset, assembled by Global Forest Watch, aggregates deforestation alerts from three alert systems (GLAD-L, GLAD-S2, RADD) into a single, integrated deforestation alert layer. This integration allows users to detect deforestation events faster than any single system alone, as the integrated layer is updated when any of the source alert systems are updated. <br><br>The source alert systems are derived from satellites of varying spectral and spatial resolutions. 30 m [GLAD Landsat-based alerts](https://gfw.global/2Lv8vVc) are up-sampled to match the 10 m spatial resolution of Sentinel-based alerts ([GLAD-S2](https://gfw.global/3vxHe7F), [RADD]( https://gfw.global/3ca04tV)). This avoids the double counting of overlapping alerts, which are instead classified at a higher confidence level, indicated by darker pixels. <br><br>Alerts are classified as _high_ confidence when detected twice by a single alert system. This can occur in areas and at times when only one alert system was operating. Where multiple alert systems are operating, alerts detected by multiple (two or three) of these systems are classified as _highest_ confidence. With multiple sensors picking up change in the same location, we can be more confident that an alert was not a false positive and do not need to wait for additional satellite imagery to increase confidence in detected loss, thus providing more confident alerting faster than with a single system.
function
Monitor forest disturbance in near-real-time using integrated alerts from three alerting systems
cautions
- Although called ‘deforestation alerts’ these alerts detect forest or tree cover disturbances. This product does not distinguish between human-caused and other disturbance types. Where alerts are detected within plantation forests (more likely to happen in the GLAD-L system), alerts may indicate timber harvesting operations, without a conversion to a non-forest land use. <br>- The term deforestation is used because these are potential deforestation events, and alerts could be further investigated to determine this. <br>- We do not recommend using deforestation alerts for global or regional trend assessment, nor for area estimates. We recommend using the annual tree cover loss data for a more accurate comparison of the trends in forest change over time, and for area estimates. Recent alerts will include false positives that have yet to raise their confidence level and may eventually be removed. Past alerts may have been removed in error from the database if rapid canopy closure precedes the additional unobscured satellite observations within 6 months. Additionally, updates to the methodologies, differing number of systems (in the case of the integrated alerts), and variation in cloud cover between months and years pose additional risks to using deforestation alerts for inter/intra-annual comparison.<br>- The alerts can be ‘curated’ to identify those alerts of interest to a user, such as those alerts which are likely to be deforestation and might be prioritized for action. A user can do this by overlaying other contextual datasets, such as protected areas, or planted trees. The non-curated data are provided here in order that users can define their own prioritization approaches. Curated alert locations are provided in the Places to Watch data layer.<br>The three alert systems have different definitions of forest/tree cover, and forest/tree cover disturbances: <br>* **GLAD-L**: alerts are within “tree cover” which is defined as all vegetation greater than 5 meters in height with greater than 60% canopy cover, and may take the form of natural forests or plantations. “Tree cover loss” indicates the canopy removal of at least half a pixel and can be due to a variety of factors, including mechanical harvesting, fire, disease, or storm damage. As such, “loss” does not equate to deforestation. <br>* **GLAD-S2**: alerts are within the primary forest mask of [Turubanova et al (2018)](https://doi.org/10.1088/1748-9326/aacd1c) in the Amazon river basin, with 2001-present forest loss from [Hansen et al. (2013)](https://doi.org/10.1126/science.1244693) removed. <br>* **RADD**: alerts are within primary humid forests. Forest loss is defined as complete or partial removal of tree cover within a pixel, and a minimum-mapping unit of 0.5 ha is used. <br>The input alert systems do not have the same spatial and temporal coverage:<br>* **GLAD-L**: Operating in the entire tropics (30°N to 30°S) from January 1, 2018 to the present, and from 2015 to the present (although paused for a period during 2022) for select countries in the Amazon, Congo Basin, and insular Southeast Asia <br>* **GLAD-S2**: Operating in the primary humid tropical forest areas of South America from January 2019 to the present <br>* **RADD**: Operating in the primary humid tropical forest areas of South America, sub-Saharan Africa and insular Southeast Asia with coverage from January 2019 to the present for Africa and January 2020 to the present for South America and Southeast Asia, with Central America covered from January 2023 (expansion to continental SE Asia and the Pacific is forthcoming by end 2023) <br>- In order to integrate the three alerting systems on a common grid, GLAD-L is resampled from a 30 m spatial resolution to 10 m to match GLAD-S2 and RADD. As a result, a single 30 m GLAD-L pixel will become multiple 10 m pixels in the integrated layer. Users should use caution when comparing the analysis results of individual systems to the integrated alert layer, as the number of integrated alerts will be much greater than the number of native GLAD-L alerts. In addition, pixels in the integrated layer may not exactly align on the map with pixels in the individual GLAD-L layer as a result of this resampling. <br>- Each pixel in the integrated layer preserves the earliest date of detection from any alerting system, even if multiple systems have reported an alert in that pixel. In some situations, this may lead to inconsistent visualizations when switching from the integrated layer to individual alerting system layers. It is advisable to use the integrated layer when you are interested in the earliest date of detection by any alerting system. However, it is better to use the individual alerting system layers if you are interested in a specific alert type. <br>- The “Highest confidence: detected by multiple alert systems” level can only be achieved in areas and for time periods where more than one alert system was in operation for that region. <br>- The confidence level may change retroactively as source data is updated; alerts that have not become high confidence within 180 days are removed from the dataset.<br>- Once an alert pixel reaches high confidence, forest loss will not be detected by the same alert system at that location again<br>- Accuracies vary across the coverage of the integrated alerts, due to different characteristics of the three alert systems – Radar (RADD) alerts for example may have more false detections in swamp forests due to the high sensitivity of short wavelength C-band radar to moisture variation<br>- When zoomed out, this data layer displays some degree of inaccuracy because the data points must be collapsed to be visible on a larger scale. Zoom in for greater detail. <br>
id
172c233b-9781-413c-925b-1a199c0507f9
Versions
v20210928
v20210930
v20211002
v20211003
v20211004
v20211006
v20211007
v20211008
v20211009
v20211010
v20211016
v20211017
v20211018
v20211019
v20211020
v20211022
v20211023
v20211025
v20211026
v20211027
v20211028
v20211029
v20211122
v20211123
v20211129
v20211130
v20211203
v20211204
v20211205
v20211206
v20211207
v20211208
v20211209
v20211210
v20211211
v20211212
v20211216
v20211217
v20211218
v20211219
v20211220
v20211221
v20211222
v20211223
v20211224
v20211225
v20211231
v20220101
v20220111
v20220202
v20220202.1
v20220205
v20220303
v20220303.1
v20220310
v20220323
v20220331
v20220414
v20220420
v20220506
v20220514
v20220524
v20220526
v20220601
v20220607
v20220609
v20220610
v20220611
v20220612
v20220613
v20220614
v20220615
v20220616
v20220617
v20220618
v20220619
v20220620
v20220621
v20220622
v20220623
v20220624
v20220625
v20220626
v20220627
v20220628
v20220629
v20220630
v20220701
v20220702
v20220703
v20220704
v20220705
v20220706
v20220707
v20220708
v20220709
v20220710
v20220711
v20220712
v20220713
v20220716
v20220721
v20220722
v20220723
v20220724
v20220725
v20220726
v20220727
v20220728
v20220729
v20220730
v20220801
v20220802
v20220803
v20220804
v20220805
v20220806
v20220807
v20220808
v20220809
v20220812
v20220813
v20220814
v20220815
v20220816
v20220817
v20220820
v20220821
v20220822
v20220823
v20220824
v20220825
v20220826
v20220827
v20220828
v20220829
v20220830
v20220831
v20220901
v20220902
v20220905
v20220906
v20220908
v20220909
v20220910
v20220911
v20220912
v20220913
v20220914
v20220919
v20220921
v20220922
v20220928
v20220929
v20220930
v20221001
v20221002
v20221003
v20221004
v20221005
v20221009
v20221011
v20221013
v20221019
v20221021
v20221031
v20221101
v20221102
v20221103
v20221104
v20221105
v20221106
v20221107
v20221108
v20221109
v20221110
v20221111
v20221112
v20221113
v20221115
v20221120
v20221121
v20221122
v20221123
v20221124
v20221125
v20221126
v20221127
v20221128
v20221129
v20221130
v20221201
v20221202
v20221203
v20221204
v20221205
v20221206
v20221207
v20221208
v20221209
v20221210
v20221216
v20221220
v20221221
v20221222
v20221223
v20221224
v20221225
v20221226
v20221227
v20221228
v20221229
v20221230
v20221231
v20230101
v20230102
v20230103
v20230104
v20230105
v20230106
v20230107
v20230108
v20230109
v20230110
v20230111
v20230112
v20230113
v20230114
v20230115
v20230116
v20230117
v20230118
v20230119
v20230120
v20230121
v20230122
v20230123
v20230124
v20230125
v20230126
v20230127
v20230128
v20230129
v20230130
v20230131
v20230201
v20230202
v20230203
v20230204
v20230205
v20230206
v20230207
v20230208
v20230209
v20230210
v20230211
v20230212
v20230213
v20230214
v20230215
v20230218
v20230219
v20230220
v20230221
v20230222
v20230223
v20230224
v20230225
v20230226
v20230227
v20230228
v20230301
v20230303
v20230304
v20230305
v20230306
v20230307
v20230308
v20230309
v20230310
v20230311
v20230312
v20230313
v20230314
v20230315
v20230316
v20230317
v20230318
v20230319
v20230320
v20230321
v20230322
v20230323
v20230324
v20230325
v20230326
v20230327
v20230328
v20230329
v20230330
v20230331
v20230401
v20230402
v20230403
v20230404
v20230406
v20230407
v20230408
v20230409
v20230410
v20230411
v20230412
v20230413
v20230414
v20230415
v20230416
v20230417
v20230418
v20230419
v20230420
v20230421
v20230422
v20230423
v20230424
v20230425
v20230426
v20230427
v20230428
v20230429
v20230430
v20230501
v20230502
v20230503
v20230504
v20230505
v20230509
v20230510
v20230511
v20230512
v20230513
v20230514
v20230515
v20230516
v20230517
v20230518
v20230519
v20230520
v20230521
v20230522
v20230523
v20230524
v20230525
v20230526
v20230527
v20230528
v20230529
v20230530
v20230531
v20230601
v20230602
v20230603
v20230604
v20230605
v20230606
v20230607
v20230608
v20230609
v20230610
v20230611
v20230612
v20230613
v20230614
v20230615
v20230616
v20230617
v20230618
v20230621
v20230623
v20230627
v20230704
v20230705
v20230714
v20230718
v20230725
v20230727
v20230728
v20230729
v20230730
v20230731
v20230801
v20230802
v20230803
v20230804
v20230805
v20230806
v20230807
v20230808
v20230809
v20230810
v20230811
v20230812
v20230813
v20230814
v20230815
v20230816
v20230817
v20230818
v20230819
v20230820
v20230821
v20230822
v20230823
v20230824
v20230825
v20230826
v20230827
v20230828
v20230829
v20230902
v20230904
v20230905
v20230906
v20230907
v20230908
v20230909
v20230910
v20230911
v20230912
v20230913
v20230914
v20230915
v20230916
v20230917
v20230918
v20230919
v20230920
v20230921
v20230922
v20230923
v20230924
v20230925
v20230926
v20230927
v20230928
v20230929
v20230930
v20231001
v20231002
v20231003
v20231004
v20231005
v20231006
v20231007
v20231008
v20231009
v20231010
v20231011
v20231012
v20231017
v20231024
v20231025
v20231026
v20231027
v20231028
v20231029
v20231030
v20231031
v20231101
v20231102
v20231103
v20231104
v20231105
v20231106
v20231107
v20231108
v20231109
v20231110
v20231111
v20231112
v20231113
v20231114
v20231115
v20231116
v20231117
v20231118
v20231119
v20231120
v20231121
v20231122
v20231123
v20231124
v20231125
v20231126
v20231127
v20231128
v20231129
v20231130
v20231201
v20231202
v20231203
v20231204
v20231205
v20231206
v20231207
v20231208
v20231209
v20231210
v20231211
v20231212
v20231213
v20231214
v20231215
v20231216
v20231217
v20231218
v20231219
v20231226
v20240102
v20240103
v20240104
v20240105
v20240106
v20240107
v20240108
v20240109
v20240110
v20240111
v20240113
v20240114
v20240115
v20240116
v20240117
v20240118
v20240119
v20240120
v20240121
v20240122
v20240123
v20240124
v20240125
v20240126
v20240127
v20240128
v20240129
v20240130
v20240131
v20240201
v20240202
v20240203
v20240204
v20240205
v20240206
v20240207
v20240208
v20240209
v20240210
v20240211
v20240212
v20240213
v20240214
v20240215
v20240216
v20240217
v20240218
v20240219
v20240220
v20240221
v20240222
v20240223
v20240224
v20240225
v20240226
v20240227
v20240228
v20240229
v20240301
v20240302
v20240303
v20240304
v20240305
v20240306
v20240307
v20240308
v20240309
v20240310
v20240311
v20240312
v20240313
v20240314
v20240315
v20240316
v20240317
v20240318
v20240319
v20240320
v20240321
v20240322
v20240323
v20240324
v20240325
v20240326
v20240327
v20240328
v20240329
v20240330
v20240331
v20240401
v20240402
v20240403
v20240404
v20240405
v20240406
v20240407
v20240408
v20240409
v20240410
v20240411
v20240412
v20240413
v20240414
v20240415
v20240416
v20240417
v20240418
v20240419
v20240420
v20240421
v20240422
v20240423
v20240424
v20240425
v20240426
v20240427
v20240428
v20240429
v20240430
v20240501
v20240502
v20240503
v20240504
v20240505
v20240506
v20240507
v20240508
v20240509
v20240510
v20240511
v20240512
v20240513
v20240514
v20240515
v20240516
v20240517
v20240518
v20240519
v20240521
v20240522
v20240524
v20240525
v20240526
v20240527
v20240528
v20240529
v20240530
v20240531
v20240601
v20240602
v20240603
v20240604
v20240605
v20240611
v20240612
v20240613
v20240614
v20240615
v20240616
v20240617
v20240618
v20240619
v20240620
v20240621
v20240622
v20240623
v20240624
v20240625
v20240626
v20240627
v20240628
v20240629
v20240630
v20240701
v20240702
v20240703
v20240704
v20240710
v20240711
v20240712
v20240713
v20240714
v20240715
v20240716
v20240717
v20240718
v20240719
v20240720
v20240721
v20240722
v20240723
v20240724
v20240725
v20240726
v20240727
v20240728
v20240729
v20240730
v20240731
v20240801
v20240807
v20240810
v20240811
v20240812
v20240813
v20240814
v20240815
v20240816
v20240817
v20240818
v20240819
v20240821
v20240822
v20240823
v20240824
v20240826
v20240827
v20240828
v20240829
v20240830
v20240831
v20240901
v20240902
v20240903
v20240904
v20240905
v20240906
v20240907
v20240908
v20240909
v20240910
v20240911
v20240912
v20240913
v20240914
v20240915
v20240916
v20240917
v20240918
v20240919
v20240920
v20240921
v20240922
v20240923
v20240924
v20240925
v20240926
v20240927
v20240928
v20240929
v20240930
v20241001
v20241002
v20241003
v20241004
v20241005
v20241006
v20241007
v20241008
v20241010
v20241015
v20241021
v20241022
v20241024
v20241029
v20241030
v20241031
v20241101
v20241102
v20241103
v20241104
v20241105
v20241106
v20241107
v20241108
v20241109
v20241110
v20241111
v20241112
v20241113
v20241115
v20241116
v20241117
v20241118
v20241119
v20241120
v20241121
v20241122
v20241123