gfw_peatlands
Information about gfw_peatlands
gfw_peatlands
created_on
2023-05-04T13:11:58.897531
updated_on
2024-10-04T16:27:49.603220
spatial_resolution
30
resolution_description
30 × 30 m
geographic_coverage
Global
update_frequency
Sporadic
scale
citation
“Global peatland extent.” Accessed through Global Forest Watch on (date)
title
Global peatland extent
source
Crezee et al. 2022 (Congo basin)
Gumbricht et al. 2017 (between 40 deg N and rest of southern hemisphere)
Hastie et al. 2022 (Amazonian lowland Peru)
Miettinen et al. 2016 (Indonesia and Malaysia)
Xu et al. 2018 (temperate/boreal, north of 40 deg N)
license
[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)
data_language
English
overview
This data set delineates peatlands and other organic soils globally using five layers. Miettinen et al. 2016 was used for Indonesia and Malaysia, Hastie et al. 2022 was used in lowland Peru, Crezee et al. 2022 was used in the Congo basin, and Gumbricht et al. 2017 was used for all land between 40 degrees north and 60 degrees south (including areas covered by the aforementioned data sets). Xu et al. 2018 was used for all land above 40 degrees north. Miettinen et al. 2016, Xu et al. 2018 were rasterized to ~30x30 m resolution while Gumbricht et al. 2017, Crezee et al. 2022, and Hastie et al. 2022 were resampled from their native resolutions to ~30x30 m resolution in order to align with the Global Forest Change maps from Hansen et al. 2013. All layers were combined, i.e. Gumbricht et al. 2017 was also used in Indonesia/Malaysia, the Peruvian Amazon, and the Congo basin. All data sources have different methods for peatland delineation, which are described in their original publications. <br><br>Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nature Geoscience 15: 639-644 (2022). [https://www.nature.com/articles/s41561-022-00966-7](https://www.nature.com/articles/s41561-022-00966-7]. Data downloaded from [https://congopeat.net/maps/](https://congopeat.net/maps/), using classes 4 and 5 only (peat classes).<br><br>Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017). [https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13689](https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.13689) <br><br>Hastie, A. et al. Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nature Geoscience 15: 369-374 (2022). [https://www.nature.com/articles/s41561-022-00923-4](https://www.nature.com/articles/s41561-022-00923-4)<br><br>Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67– 78 (2016). [https://www.sciencedirect.com/science/article/pii/S2351989415300470](https://www.sciencedirect.com/science/article/pii/S2351989415300470)<br><br>Xu et al. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. CATENA 160: 134-140 (2018). [https://www.sciencedirect.com/science/article/pii/S0341816217303004](https://www.sciencedirect.com/science/article/pii/S0341816217303004)<br>
function
Delineates extent of peatlands
cautions
• This is a composite layer comprised of five data sets, each with their own methods and strengths and weaknesses. Refer to the original publications for each data set to learn more about specific cautions for each. <br>• All input layers have been converted from vector data or resampled from coarser raster data.
key_restrictions
tags
why_added
learn_more
id
add770ea-4fa4-4dc2-bc2b-69d650f60e3a
Is downloadable?
Yes
Versions
v20200807
v20230302
v20230315