umd_glad_landsat_alerts
created_on
2023-05-04T13:11:58.897140
updated_on
2023-05-04T13:11:58.897141
geographic_coverage
30 degrees north to 30 degrees south
update_frequency
Updated weekly
citation
Use the following credit when these data are displayed:
Source: GLAD/UMD, accessed through Global Forest Watch
Use the following credit when these data are cited:
Hansen, M.C., A. Krylov, A. Tyukavina, P.V. Potapov, S. Turubanova, B. Zutta, S. Ifo, B. Margono, F. Stolle, and R. Moore. 2016. Humid tropical forest disturbance alerts using Landsat data. *Environmental Research Letters*, 11 (3). Accessed through Global Forest Watch on [date]. www.globalforestwatch.org
source
Hansen, M.C., A. Krylov, A. Tyukavina, P.V. Potapov, S. Turubanova, B. Zutta, S. Ifo, B. Margono, F. Stolle, and R. Moore. 2016. Humid tropical forest disturbance alerts using Landsat data. *Environmental Research Letters*, 11 (3).
license
[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)
overview
This data set, created by the [GLAD](http://glad.geog.umd.edu/) (Global Land Analysis & Discovery) lab at the University of Maryland and supported by Global Forest Watch, is the first Landsat-based alert system for tree cover loss. While most existing loss alert products use 250-meter resolution MODIS imagery, these alerts have a 30-meter resolution and thus can detect loss at a much finer spatial scale. The alerts are operational for land areas between 30 degrees north and south.
New Landsat 7 and 8 images are downloaded as they are posted online, assessed for cloud cover or poor data quality, and compared to the three previous years of Landsat-derived metrics (including ranks, means, and regressions of red, infrared and shortwave bands, and ranks of NDVI, NBR, and NDWI). The metrics and the latest Landsat image are run through seven decision trees to calculate a median probability of forest disturbance. Pixels with probability >50% are reported as tree cover loss alerts. The entire process is run in [Google Earth Engine](https://earthengine.google.com/) to ensure reliable updates and scalability. For more information on methodology, see the [paper in Environmental Research Letters](http://iopscience.iop.org/article/10.1088/1748-9326/11/3/034008).
Alerts are not classified as high confidence until two or more out of four consecutive observations are labelled as tree cover loss. Alerts are removed from the dataset after four consecutive observations or more than 180 days if they are not classified as high confidence. You can choose to view only high confidence alerts in the menu, though keep in mind that using only high confidence alerts misses the newest detections of tree cover loss.
function
Identifies areas of likely tree cover loss in near-real time
cautions
While Landsat 7 and 8 satellites together have a revisit period of 8 days, cloud cover can majorly limit the availability of imagery, particularly in the wet season. Alert dates represent the instance of detection, though tree cover loss could have taken place earlier, possibly weeks earlier, due to persistent cloud cover.
In this data set, 'tree cover' is defined as all vegetation greater than 5 meters in height with greater than 60% canopy cover, and may take the form of natural forests or plantations. 'Tree cover loss' indicates the canopy removal of at least half a pixel and can be due to a variety of factors, including mechanical harvesting, fire, disease, or storm damage. As such, 'loss' does not equate to deforestation.
In Peru, where the alert system was first developed, the authors evaluated the data to have 13.5 percent false positives (loss detected where none occurred), though the majority of those false positives (9.5 percent) occur on the edges of clearings. On edges, the 30 meter Landsat pixels show a mix of forest and other land cover, which makes them prone to error in the system. The rate of false positives drops to 1 percent when only considering high confidence alerts. The data has 33 percent false negatives (undetected loss where it has occurred), though most of these occur in secondary forests likely because the algorithm was created to capture primary forest loss. The higher rate of false negatives compared to false positives also indicates that the alerts are a conservative estimate of the tree cover loss that is actually occurring.
When zoomed out, this data layer displays some degree of inaccuracy because the data points must be collapsed to be visible on a larger scale. Zoom in for greater detail.
why_added
Getting even nearer to real-time, first data set of Landsat alerts!
learn_more
http://iopscience.iop.org/article/10.1088/1748-9326/11/3/034008
id
f272d653-5675-4971-966f-1446a33e4896
Versions
v202005
v20210714
v20210715
v20210720
v20210928
v20210930
v20211001
v20211002
v20211003
v20211004
v20211006
v20211007
v20211008
v20211009
v20211010
v20211016
v20211017
v20211018
v20211019
v20211020
v20211022
v20211023
v20211025
v20211026
v20211027
v20211029
v20211102
v20211103
v20211104
v20211105
v20211107
v20211108
v20211109
v20211110
v20211111
v20211112
v20211113
v20211114
v20211115
v20211116
v20211117
v20211118
v20211119
v20211120
v20211121
v20211122
v20211123
v20211124
v20211125
v20211126
v20211127
v20211128
v20211129
v20211129.1
v20211130
v20211203
v20211204
v20211205
v20211206
v20211207
v20211208
v20211209
v20211210
v20211211
v20211212
v20211213
v20211216
v20211217
v20211218
v20211219
v20211220
v20211221
v20211222
v20211223
v20211224
v20211225
v20211231
v20220101
v20220201
v20220201.1
v20220208
v20220601
v20220606
v20220607
v20220608
v20220609
v20220610
v20220611
v20220612
v20220613
v20220614
v20220615
v20220616
v20220617
v20220618
v20220619
v20220620
v20220621
v20220622
v20220623
v20220624
v20220625
v20220626
v20220627
v20220628
v20220629
v20220630
v20220711
v20220719
v20220720
v20220722
v20220723
v20220724
v20220725
v20220726
v20220727
v20220728
v20220729
v20220731
v20220801
v20220802
v20220803
v20220805
v20220807
v20220808
v20220809
v20220810
v20220813
v20220815
v20220816
v20220818
v20220819
v20220821
v20220822
v20220824
v20220825
v20220826
v20220827
v20220828
v20220829
v20220831
v20220902
v20220903
v20220904
v20220906
v20220909
v20220910
v20220911
v20220913
v20220917
v20220919
v20220926
v20220927
v20221002
v20221007
v20221009
v20221015
v20221028
v20221030
v20221104
v20221106
v20221107
v20221109
v20221111
v20221112
v20221127
v20221128
v20221203
v20221204
v20221217
v20221218
v20221219
v20221220
v20221224
v20221226
v20221227
v20221228
v20221229
v20230112
v20230113
v20230114
v20230115
v20230116
v20230117
v20230119
v20230120
v20230121
v20230122
v20230123
v20230124
v20230126
v20230127
v20230128
v20230129
v20230130
v20230201
v20230202
v20230203
v20230204
v20230205
v20230206
v20230207
v20230208
v20230209
v20230210
v20230211
v20230212
v20230213
v20230214
v20230217
v20230218
v20230219
v20230220
v20230221
v20230222
v20230223
v20230224
v20230225
v20230226
v20230227
v20230228
v20230302
v20230303
v20230304
v20230305
v20230306
v20230307
v20230308
v20230309
v20230310
v20230311
v20230312
v20230313
v20230314
v20230315
v20230316
v20230317
v20230318
v20230319
v20230320
v20230321
v20230322
v20230323
v20230324
v20230325
v20230326
v20230327
v20230328
v20230329
v20230330
v20230401
v20230402
v20230403
v20230406
v20230407
v20230408
v20230409
v20230410
v20230411
v20230412
v20230413
v20230414
v20230415
v20230416
v20230417
v20230418
v20230419
v20230420
v20230421
v20230422
v20230423
v20230424
v20230425
v20230426
v20230427
v20230428
v20230429
v20230430
v20230501
v20230502
v20230503
v20230508
v20230510
v20230511
v20230512
v20230513
v20230514
v20230515
v20230516
v20230517
v20230518
v20230520
v20230521
v20230522
v20230523
v20230524
v20230525
v20230526
v20230527
v20230528
v20230529
v20230530
v20230531
v20230601
v20230602
v20230603
v20230604
v20230605
v20230606
v20230607
v20230608
v20230609
v20230610
v20230611
v20230612
v20230613
v20230614
v20230615
v20230616
v20230617
v20230620
v20230725
v20230726
v20230727
v20230728
v20230729
v20230730
v20230731
v20230801
v20230802
v20230803
v20230804
v20230805
v20230806
v20230807
v20230808
v20230809
v20230810
v20230811
v20230812
v20230813
v20230814
v20230815
v20230816
v20230818
v20230819
v20230821
v20230822
v20230823
v20230824
v20230825
v20230826
v20230827
v20230901
v20230902
v20230903
v20230904
v20230905
v20230906
v20230907
v20230908
v20230909
v20230910
v20230911
v20230912
v20230913
v20230914
v20230915
v20230916
v20230917
v20230918
v20230919
v20230920
v20230921
v20230922
v20230923
v20230924
v20230925
v20230926
v20230927
v20230928
v20230929
v20230930
v20231001
v20231002
v20231003
v20231004
v20231005
v20231006
v20231007
v20231008
v20231009
v20231010
v20231024
v20231025
v20231026
v20231027
v20231028
v20231029
v20231030
v20231101
v20231102
v20231103
v20231104
v20231105
v20231106
v20231107
v20231108
v20231109
v20231110
v20231111
v20231112
v20231113
v20231114
v20231115
v20231116
v20231117
v20231118
v20231119
v20231120
v20231121
v20231122
v20231123
v20231124
v20231125
v20231126
v20231128
v20231129
v20231130
v20231201
v20231202
v20231203
v20231204
v20231205
v20231206
v20231208
v20231209
v20231210
v20231211
v20231212
v20231213
v20231214
v20231215
v20231216
v20231217
v20240101
v20240103
v20240104
v20240105
v20240106
v20240107
v20240108
v20240109
v20240110
v20240112
v20240113
v20240114
v20240115
v20240116
v20240117
v20240118
v20240119
v20240120
v20240121
v20240122
v20240123
v20240124
v20240125
v20240126
v20240127
v20240128
v20240129
v20240130
v20240131
v20240201
v20240202
v20240203
v20240204
v20240205
v20240206
v20240207
v20240208
v20240209
v20240210
v20240211
v20240212
v20240213
v20240214
v20240215
v20240216
v20240217
v20240218
v20240219
v20240220
v20240221
v20240222
v20240223
v20240224
v20240225
v20240226
v20240227
v20240228
v20240229
v20240301
v20240302
v20240303
v20240304
v20240305
v20240306
v20240307
v20240308
v20240309
v20240310
v20240311
v20240312
v20240313
v20240314
v20240315
v20240316
v20240317
v20240318
v20240319
v20240320
v20240321
v20240322
v20240323
v20240324
v20240325
v20240326
v20240327
v20240328
v20240329
v20240330
v20240331
v20240401
v20240402
v20240403
v20240404
v20240405
v20240406
v20240407
v20240408
v20240409
v20240410
v20240411
v20240414
v20240417
v20240422
v20240424
v20240426
v20240427
v20240505
v20240513
v20240514
v20240526
v20240527
v20240529
v20240602
v20240603
v20240604
v20240612
v20240616
v20240622
v20240623
v20240624
v20240625
v20240628
v20240629
v20240630
v20240701
v20240702
v20240716
v20240725
v20240726
v20240727
v20240728
v20240729
v20240730
v20240731
v20240809
v20240810
v20240811
v20240812
v20240904
v20240905
v20240906
v20240907
v20240908
v20240909
v20240910
v20240911
v20240912
v20240913
v20240914
v20240915
v20240916
v20240917
v20240918
v20240921
v20240922
v20240923
v20240925
v20240926
v20240927
v20240928
v20240929
v20240930
v20241001
v20241002
v20241003
v20241004
v20241005
v20241006
v20241007
v20241009
v20241014
v20241020
v20241021
v20241027
v20241030
v20241102
v20241106
v20241108
v20241109
v20241110
v20241111
v20241112
v20241114
v20241115
v20241116
v20241117
v20241119
v20241120
v20241121
v20241122